Week 10: The vented cabinet loudspeaker (part 1)

Microphone and Loudspeaker Design - Level 5

Joshua Meggitt

Acoustics Research Centre, University of Salford

Weekly fact about... your home town!

What's the best fact about your home town?

What are we covering today?

- 1. Transmission line loudspeaker
- 2. Vented cabinet design
- 3. Vented cabinet equivalent circuit
- 4. Mechanical motion and electrical impedance
- 5. Tutorial questions

Transmission line loudspeaker

Transmission line loudspeaker: OG (mark 2)

- The sealed cabinet is loaded by a compliant volume of air. Causes a decrease in total compliance and increase of resonant frequency/cut-off.
- How else can we prevent rear radiation interfering?
 - Load driver with an infinite duct/pipe?
- Idea behind the transmission line loudspeaker.
- How does an 'infinite duct' effect the driver response?
- We need to find its acoustic impedance

$$Z_{Ab} = ?? (1)$$

Figure 1: Transmission line loudspeaker.

Infinite pipe: acoustic impedance

• In pipes sound is assumed to be a plane wave:

$$P = P_0 e^{j(\omega t \pm kx)} \tag{2}$$

 From PoA (next semester with Olga) we know that the particle velocity and pressure are related by Euler's eq:

$$\frac{dP}{dx} = -\rho_0 \frac{du}{dt} \tag{3}$$

ullet This is basically Newton's 2nd Law for a wave F=ma

Infinite pipe: acoustic impedance

• Assume infinite pipe length with a travelling wave in one direction:

$$P_{+} = P_0 e^{j(\omega t - kx)} \tag{4}$$

• From Euler's eq:

$$\frac{dP}{dx} = -\rho_0 \frac{du}{dt} \quad \to \quad u = -\frac{1}{\rho_0} \int \frac{dP}{dx} dt \tag{5}$$

Substitute travelling wave

$$u = -\frac{1}{\rho_0} \int \frac{d}{dx} P_0 e^{j(\omega t - kx)} dt = \frac{jk}{j\omega\rho_0} P_0 e^{j(\omega t - kx)} = \frac{1}{\rho_0 c} P_+ \tag{6}$$

Infinite pipe: acoustic impedance

We have the pressure velocity relation,

$$u = \frac{1}{\rho_0 c} P_+ \tag{7}$$

• The *specific* acoustic impedance is then

$$z = \frac{P_+}{u} = \rho_0 c \tag{8}$$

• The acoustic impedance (i.e. pressure over volume velocity)

$$U = uS \quad \to \quad Z_A = \frac{P_+}{U} = \frac{\rho_0 c}{S} \tag{9}$$

This impedance is purely resistive!

Transmission line loudspeaker: acoustic loading

- The impedance of an infinite pipe is purely real it has no reactive part.
- Loading a loudspeaker by an infinite pipe (i.e. a transmission line) will not change the resonant freq. of the driver.
- Acoustic front load (same as before)

$$Z_{Af} = R_{Af} + j\omega M_{Af} \tag{10}$$

• Rear acoustic load

$$Z_{Ab} = R_{Ab} = \frac{\rho_0 c}{S} \tag{11}$$

Figure 2: Transmission line loudspeaker.

Transmission line loudspeaker: equivalent circuit

- No added compliance no increase in resonant freq. $f_s=f_c$ improved low freq. response compared to a sealed cabinet.
- Absorbent material provides more or less anechoic back-load.
- ullet Length of duct typically $pprox \lambda/2$ constructive interference between port and driver

Figure 3: Transmission line equivalent circuit.

Vented cabinet design

Vented cabinet loudspeaker: the GOAT

- Problem: sealed/transmission line cabinet low frequency cut-off limited by f_s
- Solution: the vented cabinet.
- Why?
 - Extend the low frequency performance
 - Control cone movement
 - Utilise radiation from the rear
- How?
 - Take a sealed cabinet
 - Add hole with port (circular or rectangular)
 - Cross fingers and hope it works?

Vented cabinet loudspeaker: parameters

Driver/diaphragm:

 $M_{AD},\,C_{AD},\,R_{AD}$ - mechanical mass, compliance and damping $M_{Af,b},\,R_{Af,b}$ - acoustic loading (piston) U_D - volume velocity

• Cabinet:

 C_{AB} , R_{AB} - compliance and damping U_{B} - volume velocity

• Vent:

 $M_{AV}^{\prime},\,R_{AV}^{\prime}$ - mass and damping $M_{AVf,b},\,R_{AVf,b}$ - acoustic loading U_V - volume velocity

Figure 5: Vented cabinet loudspeaker.

Vented cabinet loudspeaker: a two DoF system

- The degree of freedoms (DoF) of a mechanical (or acoustical) system is the number of independent parameters that define its configuration.
- Number of DoFs = number of resonant frequencies
- Sealed cabinet is a 1 DoF vibrating system:
 - Velocity of driver U_D
- Vented loudspeaker is a 2 DoF vibrating system:
 - Velocity of driver U_D
 - Velocity of vent mass U_V
 - (We also define the box velocity $U_B = U_D U_V$)
- Vent mass adds an extra resonant frequency to the loudspeaker system...
- To determine the behaviour of a vented loudspeaker we need to analyse the 2 DoF system. We will use an equivalent circuit approach.
 - Really great MIT lecture on 2 DoF systems!

Vented cabinet loudspeaker: parameters

Figure 6: Equivalent mechanical model.

Figure 7: Vented cabinet loudspeaker.

Vented cabinet loudspeaker: box volume velocity

- Here is a link to an experimental example of a 2 DoF system
 - 2:40 in phase motion (out of phase driver/vent)
 - 4:20 minimum response of first mass (maximum vent velocity)
 - 8:20 out of phase motion (in phase driver/vent)
- Depending on frequency of excitation the masses have different relative motions
- At resonance these motions are the natural modes of the system

Figure 7: Vented cabinet loudspeaker.

Vented cabinet equivalent circuit

Sealed cabinet loudspeaker: equivalent circuit

- Sealed cabinet single DoF only one velocity/current
- Note that there is only one loop.
- All elements share the same current (or volume velocity).

Figure 8: Complete equivalent circuit for lossless sealed cabinet.

Vented cabinet loudspeaker: equivalent circuit

- **Vented cabinet** two DoFs three velocities/currents (including box U_B)
- There are now two loops!
- ullet The supplied current U_D is separated into U_V and $U_B=U_D-U_V$

Figure 9: Complete equivalent circuit for vented cabinet.

Vented cabinet loudspeaker: equivalent circuit

- To make life easier we can group all acoustic loading terms within the driver and vent mass/damping
- To design a vented loudspeaker we will need to analyse this circuit (but not today..!)

Figure 10: Simplified complete equivalent circuit for vented cabinet.

Mechanical motion and electrical

impedance

Vented cabinet loudspeaker: diaphragm and vent velocity

Figure 11: Volume velocity of diaphragm and vent of vented loudspeaker.

- As expected we get two resonant frequencies in the diaphragm velocity
- How does this response translate the electrical impedance and radiated pressure?

Vented cabinet loudspeaker: electrical impedance

Figure 12: Electrical impedance of vented and sealed loudspeaker.

- \bullet Large driver velocity \to large back EMF \to increased electrical impedance
- Two peaks in electrical impedance back system has two resonant frequencies

Electrical impedance: lower resonance

- At lowest resonance f_L cavity acts 'rigidly' - masses move together in phase
- $f_L < f_s$ due to added vent mass.
- Driver and vent are 180° **out of phase**
 - As the driver moves outwards, the mass of the vent is sucked inwards
 - As the driver moves inwards, the mass of the vent is pushed outwards
 - Destructive interference leads to ${\bf poor}$ radiation around f_L
- Large diaphragm velocity increased electrical impedance due to back EMF

Figure 13: Vented electrical impedance.

Electrical impedance: lower resonance

Figure 14: Behaviour at lower resonance

Figure 13: Vented electrical impedance.

Electrical impedance: upper resonance

- At upper resonance f_H the cavity acts like a spring - masses bounce on the cabinet compliance
- Driver and vent are 180° out of phase
 - Mass-spring-mass move in opposite directions
 - Driver/vent move in same direction
 - Constructive interference leads to efficient radiation around $f_{\cal H}$
- Large diaphragm velocity increased electrical impedance due to back EMF

Figure 15: Vented electrical impedance.

Electrical impedance: upper resonance

Figure 16: Behaviour at upper resonance

Figure 15: Vented electrical impedance.

Electrical impedance: minimum/Helmholtz frequency

- The minimum frequency occurs at the Helmholtz frequency of the cabinet
- ullet $U_D=0
 ightarrow f_M$ is independent of driver
- The driver velocity is fixed vent mass is bouncing on a cavity volume

$$f_M = \frac{1}{2\pi} \sqrt{\frac{1}{M_{AV}C_{AB}}} \tag{12}$$

ullet Tiny diaphragm velocity - minimal back EMF - DC resistance $Z_Epprox R_E$

Figure 17: Vented electrical impedance.

Electrical impedance: Helmholtz resonance

Figure 18: Behaviour at Helmholtz resonance

Figure 17: Vented electrical impedance.

Vented cabinet: pressure contributions

- At Helmholtz resonance f_M :
 - Driver output minimum
 - Vent output maximum (most of the output)
- At lower resonance f_L :
 - Driver/vent rigidly coupled and out of phase
 - Destructive interference causes sharp roll off
- At upper resonance f_H :
 - Driver/vent bounce on cabinet compliance
 - In-phase and combine constructively
- Above upper resonance:
 - Vent mass inertia causes roll off in output
 - Driver only sees the cabinet and behaves like sealed cabinet

Figure 19: Vented pressure contributions.

Sealed vs. vented cabinet response

• Sealed cabinet:

- Poor low freq. response (limited by f_s of driver)
- Roll of is 12 dB/oct (this is a 2nd order effect)

Vented cabinet:

- Extended low frequency response due to vent contribution
- Roll of is 24 dB/oct (this is a 4th order effect due to the 12 dB/oct for both driver and vent)
- Check out this video! Vented sub in action.

Figure 20: Sealed vs. vented cabinet response for the same driver.

Tutorial questions

Tutorial questions

Click to open tutorial questions!

Next week...

• Circuit analysis and design procedure for vented cabinets.

- Reading:
 - Vented cabinet. Lecture notes Sec. 8.3